Remote sensing and the Internet of Things

Wires. That’s the problem with remote sensing, at least it has been until recently. You needed wire to get the signal back to where you wanted to view it, and often to power your sensor too. That’s a grand PITA. The last time I looked at this, about a decade ago, you could get little RF modules running at around 433MHz but these presented the raw demodulated FM signal. Great for voice but you then needed a modem to wrap around the project. And some sort of protocol stack, possibly.

That exchanged the signal wiring problem for a sensor powering issue, and these radio modules were send or receive so everything would end up fire and forget.

I was chuffed to find there’s been a lot of movement in this field. A lot of it seems Arduino based and I selected PICs when getting into micros, so it is a new learning curve. In researching this I came across JeeLabs and Ciseco. The latter had some £12 bidirectional RF to serial cards, the XRF, which I expected to attach a PIC. However, they seeme ot also have used the microcontroller on the RF board to do some signal conditioning for a few sensors, including temperature via the Dallas 18B20 or a thermistor. Since temperature and battery voltage/contact status are some of the things I want to remote sense that saves me a load of programming grunt-work.

They have also documented a simple serial sensor protocol, LLAP, which fitted my needs. The Internet of Things is all very well but if you need a TCP/IP stack for each battery powered node you need a lot of processing power and electrical power, which is back to wiring again.

So I ordered four XRF boards, a couple of thermistor boards and a XBBO carrier board to interface to an FTDI cable to USB. Assembling the thermistor boards and the XBBO were easy enough, now it was time to test it all out and getting some readings. To do that you have to set your LLAP sensor device to some particular address. and this is where is started getting hard. You have to program them over the air, and you have 100ms to respond to the started command.

Ciseco XBBO board for LLAP devices

That’s great for security, but I don’t type that fast 🙂 Which is why I use this script to do that job.

 

Leave a Reply

Your email address will not be published. Required fields are marked *