This project is to make something that used to be common – a GPS receiver with serial data output. Modern APRS handhelds like the THD72 have GPS on board, but my Kenwood TH-D7 is from the turn of the century and doesn’t have onboard GPS. I used to pipe the output of a handheld GPS into the serial port. That worked fine, but in the field it’s a drag to use a handheld GPS tethered to a rig. Every time you want to put something down or set the rucksack down you end up with a knitting session on the cables. This is why they invented Bluetooth, and one option I considered was running a little Bluetooth receiver to a Copilot BT GPS. Trouble with the Copilot is how do you recharge it in the field, and I need to pick off power from somewhere to run the Bluetooth receiver. So I still get cables to the rig and another battery to manage 🙁
Most handheld GPS receivers like my Garmin Vista HCx have moved on to USB serial interfaces now, whereas the 1990s vintage Kenwood TH-D7e uses 4800-n-8-1 RS232, which is what GPS units chucked out in those days. Early THD7s had a problem reading the serial stream since NMEA 0183.3 superseded 0183.2 for the reasons described in the Potator article. I assumed my unit was one of these, so I constructed the Potator, but while the rig worked through it, it also worked without it, so I was lucky and dispensed with that 🙂
I have one of these Ravpower iSmart USB batteries, and it works a treat when used as the manufacturer intended – to power a mobile phone or an iPod (4th gen touch in my case). No complaints whatsoever.
I constructed a remote GPS module with MAX232 RS232 chip, and all this wants to run off 5V – the MAX232 is specced at 4.5V to 5.5V, the GPS is probably more tolerant. So the obvious thing to do is to cut off a USB cable, use the USB A plug and wire the power to my device from this. No need for a regulator, job done, and indeed the GPS fires up. Dandy. No need for 5V regulators, no need to mess about with undervolt cutoff, 5V power straight out of the box, what’s not to like?
An intelligently managed battery
The USB battery gives me a USB chargeable device and integrated power management, you can’t overcharge these or run them flat, and as someone who has just trashed a LiPo battery by leaving it connected overnight and flattening it, I appreciate that thought. Until I find out that
iSmart is too darn smart
and decides my device isn’t drawing enough power and pulls the plug after a couple of minutes. Damn. My GPS draws a hefty 50-60mA, depending on whether the unbelievably bright LED the Chinese makers decided to fit is on or not.
I took my Radio Amateur’s Exam (RAE) in 1978 – I’d been interested in electronics as a child but I was never going to be able to afford any gear, I thought a technical interest would add a little bit of colour to my application to do Physics at Imperial College. My grandfather had been a radio amateur and he gave me an old homebrew crystalled 2m AM rig. But when I fired it up and my Physics teacher who was a radio ham looked for the signal at his home about 500 yards away there was nothing there, and I didn’t have the skill or gear to know what to do. I had a multimeter but no ‘scope. I could do the RAE, with a general electronics background and revising the licensing terms on the train up from southeast London to City and Guilds which was taken in what the University College London building in Malet Street. Imposing joint, I think it looked like this.
I got into Imperial. Didn’t do anything with the pass for over ten years until I came to Suffolk, and there were a few radio amateurs in the group I joined, and I got my amateur licence in 1991 – next year I will be eligible for the QCWA 😉 Initially I used a modified Tait PMR rig on 2m, but getting crystals cut got old quickly because it was dear. I then bought a secondhand FT290. However, I was living only 15m above sea level in the town, and I never got my head round all this propagation malarkey, and not having Morse meant I had to stay 6m and up ISTR. I stuck with 2m and I was never going to be doing this working the world thing without HF[ref]I’ve simplified things a lot – I had technical and engineering skills but no talent for operating[/ref], and was always a second class licensee ‘cuz only Real Men used HF.
The Internet and Amateur radio
Packet radio and the early TCP-IP over KISS modems was interesting and how I learned some of how routeing went. Then the Internet happened and basically ate amateur radio’s lunch, well, what was left of it after GSM mobile and SMS became widespread. It’s difficult for anybody born after 1990 to realise just how poor communications were, but in the end when you want to just get in touch then a modern mobile phone has solved most of the problems amateur radio had uniquely addressed, if we leave out the self training and experimentation lark. Amateur radio had been doing okay with data communications and packet AX-25, but then that Berners-Lee chap invented the Web, and broadband showed up. It looked like game over, and, well, as for so many people, life and work kinda gets in the way.
A different era, and different applications
Recently I had a use for APRS, and I take another look and I like what a new generation have done with amateur radio, they’ve grabbed it by the short and curlies and dragged it into the 21st century, working with modern networking and tech rather than harking back to the golden days of Morse and tubes. I have nothing against Morse or tubes and indeed now that I don’t have to pass Morse to get on HF I am messing about with it.
I read James M0ACQ’s blog about how he went from a standing start to Full Licence in a year. Not only is he doing good stuff with it and indeed some things I may take a fancy to, but there seem to be others doing more with it.
We are going to do some experiments trying to lengthen the day light-wise on salad leaves, getting them jump started to harvest earlier. Britain is a funny place to grow things, the maritime microclimate means it is relatively warm for the latitude. The growing season can be limited by temperature and/or light. Because we are warmer than typical for the latitude there might be some mileage in tackling light. Britain is basically warm and dark from a plant POV. You tackle temperature using a greenhouse, or in our case a polytunnel.
Trouble is we have no power on site, so this is an LEDs and leisure batteries job. It’s easy enough to turn off the lights once real light is bright enough[ref]I went off this after reading the Philips material and some other web research in favour of a straight time switch[/ref], but a leisure battery gets trashed if I just let it run down too much, ideally I want to pull the load once it’s down to 11.5 V or so. This gets complicated when you have something charging the battery too, but the whole point I am trying this is because we are around the Winter Solstice so there’s not much light about. So the only way that battery is going to get charged is for it to be recovered, changed out, charged and reinstalled. So once the battery gets lower than 11.5V it’s time to pull the load and keep it pulled until the battery power is reset. Even if the battery level creeps up above 11.5V off load that load should still stay off.
What LED colours?
LEDs give the opportunity to favour certain wavelengths – leaves are green because plants don’t use much green, which gets reflected back for us to see.
Red and blue seem to be the light colours wanted, with more blue in the initial stages, red for the flowering stages. This seems to be starting to be big business, though I do somewhat wonder at the approach taken. Many of the woes of industrial agriculture stem from its arrogance in separating variables and hitting one particular aspect for all its worth – chemical farming addressing nutrients but destroying soil micro-organisms that have cycled nutrients for millennia resulting in veg that increasing lacks trace elements (the McChance and Widdowson The Composition of Foods longitudinal research) and tastes of bugger all being one example. There’s a difference between trying to push things a bit but still working with natural light and growing stuff in windowless warehouses and hubristic statements like
We are beginning to understand that growing crops in this way can improve their quality in many different ways, from their shape and colour to their flavour and nutritional value. We could, for example, increase plants’ vitamin C content.
Hmm. Maybe if we could answer why the mineral content of industrially grown foods has been falling and often tastes bland compared to 30 years ago or more I’d have more confidence in that statement. Can’t argue that yield has gone up due to industrial farming, but quality?
Back to the LEDs – we will always be short of power, though at least we are growing plants that can grow okay in the UK – salad leaves, just trying to advance them. Many people who use grow lights are trying to grow five-pointed leaf plants that aren’t typical UK horticulture. We should be having an easier job 😉 We are dealing with seedlings, which also makes life easier – we can get the LEDs much closer to the plants, a few centimetres. The RHS publication Science and the Garden: The Scientific Basis of Horticultural Practice seems to support this on page 211 which is just as well given our power limitations
This is easy enough because I am looking for the battery voltage to drop below 11.5V after which I will shut off the lights. By putting this on our RF network I get the status reported back, and by using the Ciseco RFu I get an almost-free arduino chip so I can throw in a temperature monitor, as well as manage down the shocking 7mA quiescent current of the Arduino by sleeping it most of the time[ref]the ATMega 328 does have a watchdog timer but it’s a slight git to use with the Arduino[/ref].
Measuring the battery voltage depends on the reference voltage which is supplied by a KY5033 linear regulator (Texas LP2950 fixed 3.3V) There are actually pretty good, within 2% across -40 to 100C, which is better than the 5% tolerance of my resistor divider, which I want to arrange so the output is 3.3V/2 when I apply 10.24V, which can be done with a 115kΩ top resistor into a 22kΩ lower resistor. The total string draws 12/137 mA which is about 100uA, and the source resistance is about 18k, above the 10k recommended in the datasheet but I am only looking for about 8 bits of resolution. I could put a capacitor across the ADC input to improve that, but I can live with the error.
Jeelabs shows I could take this a lot further, but it’s good enough. I will be powering a string of LEDs drawing about half an amp for half a day or more, so as long as someone gets to the battery in about a week after it shuts down I will only have drawn another 0.02Ah from this cause, plus a bit more from the temperature and RF reporting for a few seconds every 15 minutes.
Results – failed
because we couldn’t keep the power up long enough, it just needed too many changes of batteries. We were also fighting the fact that the lighting blocks some of the daylight, so it was probably overall a reduction of light.
I have had success using three 11W CFL lamps about 60cm above some seedlings at home where power is available, so the idea of manipulating light is sound. But it’s not low-power, unfortunately, even with LEDs.
I used last.fm for scrobbling music plays, because it’s nice to see what I was playing. Last.fm did do a decent job of occasionally finding new stuff I’d like. Which is great – the best time for discovering new music was at university for me, because I was thrown together with a bunch of bright people who had come from different backgrounds. That was an analogue world, and last.fm is a digital form of that, although it is also a filter bubble, unlike university. Sometimes you need to seek out things outside the comfort zone, to be able to find new material – serendipity is a wonderful thing at times.
I don’t find that much wrong with music now, but there is a lot wrong with the process of finding it. The internet has destroyed the gatekeepers. In theory that’s a great thing, but I kinda miss A&R who listened to so much crap so that the rest of us didn’t have to. Serendipity works well enough when you’re faced with a universe of stuff that somebody liked well enough to risk money on, but it doesn’t work in a world where you have a multimedia firehose of stuff that is only qualified by the fact people can upload it to Youtube. The signal gets lost in the noise. But then the music industry and artists probably miss us paying them, so we have mutually assured destruction by improved choice. That seems to be why radio is still relevant – this Guardian article sums up the problem:
There is simply too much music out there as the industry tries to throw everything at the wall and hope something sticks. In 2010, Nielsen reported that 75,000 new albums were released that year, a number unlikely to have changed much this year. Spotify and iTunes boast of catalogues of more than 30m songs. We are drowning in music and most of it will go unheard.
And I hate the Cloud for its unreliability, not day to day but the way firms go bust or metamorphose into doing evil, the way it sells my data and claims ownership. Last fm was one of the things that cloud did well, but it seems to have gone functionally much less useful since getting bought by CBS. And it has several years history of mine that I’d like to extract. I am not that troubled my them owning all that data, although I want to move to libre.fm sometime. But they can’t sent a signup email, so at the moment I have the choice between minor evil and dysfunctionality 😉
Joanne’s note Oct 2016:Like our previous failed attempt, we just wanted to keep it in here for completeness (unlike big corporations, we don’t hide results that don’t support our aims!) and to make it clear that it has been hard work refining our compost making art to meet the Ingham spec! In retrospect it will have been getting cooler in October, and we hadn’t started wrapping our heaps in mypex woven black plastic for insulation on our exposed site. Also, we probably hadn’t added enough nitrogen or chopped the material up enough which was the key to our subsequent sucesses.
This heap was made using the hardware cloth mesh netting technique. In retrospect September is far too late to have tried out that approach, the autumn winds dried this heap out after a promising start. We need to shelter this sort of construction more than the more enclosed black plastic bin.
On our site this construction is going to be more a late Spring and Summer sort of thing. The failure mode is drying out, as the chart shows the core got hot enough the first and even the second time, but couldn’t sustain the burn. The large discrepancy between the temperature probes also points to unevenness.
Joanne’s note Oct 2016: Probably too discouraging! Just wanted to keep it in here for completeness, and to make it clear that it has been hard work refining our compost making art to meet the Ingham spec! In retrospect it will have been getting cooler in September, and we hadn’t started wrapping our heaps in mypex woven black plastic for insulation on our exposed site. Also, we probably hadn’t added enough nitrogen or chopped the material up enough which was the key to our subsequent successes.
Wouldn’t it be nice if I could take a picture of a bird as it passed through an invisible beam of light? The idea’s not original, these things exist, but they are quite dear, so I am experimenting with making these.
The most obvious way is a light source and a photocell, and indeed many years ago at secondary school I developed an analogue circuit[ref]people normally consider monostables as digital but mine was built using discrete transistors and resistors, and the time delay was infinitely variable, as it would be with a CMOS 4538, so I consider it analogue[/ref] using OC71 transistors scavenged off postwar computer boards to make up monostable multivibrators for the delay elements and one with the black scraped away from the housing to act as a phototransistor.
This gonzo technology of 40 years ago triggered the flash for the source negatives used in the animation – you set a very slow drip, and as the drop passes the photocell it triggers the delay. By increasing the delay between the drop passing and the flash going off you get the progressive animation, assuming each drop makes a similar pattern.
This was done with a manual camera, a new Canon AE1 ISTR that one of the other kids had. But the trick is to do all this in the dark, click the camera on Bulb and use the trigger to trip the electronic flash, which responds within milliseconds and has a short duration of about a millisecond if you reflect some of the flash back into the photocell of the flash (to turn it off as early as possible).
So there’s nothing incredibly hard about doing this, in controlled conditions, in a darkened room. If I were doing it again, I’d do it in the same basic way, using a phototransistor and a CD4538 CMOS dual monostable rather than a discrete monostable – one half to give the delay controllable with a pot and the other to make a pulse off the falling edge to go into a NPN transistor to trip the flash. There’s no need to muck about with PIC microcontrollers or Arduinos though you could do it that way if you really have to for a higher cost plus the aggravation of writing code, plus the jitter of the Arduino sampling the sensor/responding to the interrupt. In high-speed photography sub-milliseconds matter.
Everything gets harder outdoors
Outdoors you have massive and variable amounts of light from the sun, distances are longer, there’s just a whole lot more hurt all round.
In Part 2 I described a flat coil sensor which changes inductance according to the magnetic susceptibility of what is in front of it. To make this useful in the field I need something to display the change.
I was going to count the high-frequency microcontroller clock over, say 500 periods of the low-frequency sensor signal. That turns out to be a terrible way to do this. I don’t have the gear to measure it, but I suspect the jitter from slicing the 1.5kHz sensor signal is too high. The result is that the third significant digit twitters a lot. By counting changes in the sliced sensor signal (thus doubling the frequency) over a fixed period I get the twitter down to one part in >12000 counts1 over a four-second signal acquisition time. Continue reading “Measuring paramagnetism 3 – a portable instrument”